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Abstract. The steady-state analysis of a single-mode two-photon laser are treated semiclassically by using
the Maxwell-Bloch equations. The theory is applied to a ring-laser model. We find similarities and signifi-
cant differences between the one- and two-photon polarizations of the medium, population inversion and
mode-pulling formula. The population inversion and the longitudinal variation of the steady-state modulus
of the field are studied numerically.

PACS. 42.55.Ah General laser theory – 41.20.Jb Electromagnetic wave propagation – 42.25.Ja Polarization

1 Introduction

Recent work [1] in view of continuing technological im-
provements in microcavities even at optical frequencies
has motivated the examination of certain aspects of the
two-photon laser theory that are fundamental to the pro-
cess. There aspects have their counterpart in the usual
single-photon laser, but rather different behavior is to be
expected in the two-photon case, owing to the essential
non-linearity of the process even at weak signal. We have
here in mind a degenerate two-photon laser with the atom
pumped to the upper state connected to the lower one of
the lasing transition by a two-photon process. Although
not realized as yet in this pure form, it probably is a mat-
ter of short time before that occurs [2–4]. The situation
here is somewhat different from the dressed states scheme
that has already been demonstrated experimentally some
time ago by Mossberg and collaborators [5,6].

The issue we have in mind has to do with the steady-
state behavior of the system, taking into account the de-
pendence on the relevant magnitudes such as the field
strength and the inversion. This is most conveniently ac-
complished in a semiclassical formalism in terms of the
Maxwell-Bloch equations. Related treatments based on ei-
ther simple rate equations [7], discussing threshold condi-
tions, or the Maxwell-Bloch equations without the spatial
dependence, have been presented in the literature [8–10].
What we have studied and present below is essentially the
generalization of the complete Maxwell-Bloch equations,
usually employed in the single-photon laser theory, to the
two-photon case. We have found it most convenient to use
a formulation presented some time ago by Narducci in the
semiclassical theory of the single-photon laser [11].

a e-mail: midicine@sohag.jwnet.eun.eg

2 Derivation of equations

We consider the coupled set of Maxwell-Bloch equations,
in the usual rotating-wave approximation, which govern
our two-level atom when the dipole forbidden transition is
replaced by a two-photon one. We consider the degenerate
case, in which pairs of photons with the same frequency
are created or absorbed, and we analyze the stability of
the steady state. We adopt a semiclassical laser model
based on a microscopic two-level Hamiltonian. We assume
a collection of identical homogeneously broadened two-
level atoms, with energies E1 and E2 such that E2 > E1

with E2 − E1 = �ωa, ωa the atomic transition frequency
and a generated unidirectional single-mode classical elec-
tric field

E(z, t) =
1
2
{E0e

i(kcz−ωct) + c.c.} (1)

inside a ring cavity. Here E0 is the real field amplitude,
kc the wave number, z the cavity axial direction and ωc
represents the unloaded cavity frequency. The atoms in-
teract with the field in the dipole approximation via a
two-photon transition, where these states are assumed to
have the same parity, and thus are not connected by a
one-photon transition.

Adopting the plane-wave approximation, we reduce
the Maxwell-Bloch equations to

∂F̄

∂z
+

1
c

∂F̄

∂t
= −αP̄ F̄ ∗, (2)

∂P̄

∂t
= −(γ1 + iδac)P̄ − γ1F̄

2D̄, (3)
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∂D̄

∂t
= γ2

{
1
2
(P̄ F̄ ∗2 + P̄ ∗F̄ 2)− D̄ + 1

}
, (4)

where F̄ , P̄ and D̄ are the normalized output field, two-
photon polarization and population difference, respec-
tively, (F̄ =

√
µ(2)/�γ1γ2Ē0), µ(2) the effective dipole

matrix element for the two-photon transition, γ1 and
γ2 are the decay rates of two-photon polarization and
population difference, respectively. α denotes the unsatu-
rated gain constant per unit length of the active medium
(α = 2Nωc(µ(2))2/3/2c�ε0γ1), where N is the number of
atoms per unit volume, ε0 the vacuum electric permeabil-
ity and c the speed of light. We denote by δac = ωa − 2ωc
the detuning of the cavity mode from two-photon reso-
nance, and the term proportional to (γ1 + iδac) is similar
to that of the one-photon case. Equations (2-4) are the
same as those for one-photon two-level system with the
following substitutions F̄ → F̄ 2 and ωc → 2ωc. Equations
(2-4) here are non-linear in F̄ , as is also the case for the
one-photon two-level system [11]. The major difference be-
tween the two cases is that the equations governing this
system involve non-linearity of higher order. Equations
(2-4) have been derived by assuming an effective Hamilto-
nian, i.e., by assuming a pure two-photon interaction be-
tween the two-level atom and electromagnetic field. This
approach neglects residual effects of any largely detuned
one-photon transitions between the lasing levels and other
atomic levels [12,13]. A more precise approach consists in
assuming an exact or microscopic interaction Hamiltonian
that describes the interaction of the electromagnetic field
with a three-level cascade atomic scheme [14,15]. When
the intermediate atomic level is far from one-photon res-
onance, the one-photon coherence can be adiabatically
eliminated and the resulting two-photon laser equations
are similar to the present equations but include three ad-
ditional detuning terms describing frequency shifts.

The model is completed by appropriate boundary con-
ditions which, in the case of a traveling wave ring-cavity
resonator, take the form

F̄ (0, t) = RF̄ (L, t− (Λ− L)/c), (5)

where L is the length of the active medium; while the full
length of the ring resonator is Λ, and R is the amplitude
reflectivity of two of the mirrors. For simplicity, the re-
maining optical surfaces that are needed to complete the
ring are assumed to be ideal reflectors.

3 Steady state

To study the steady state, we consider the equations in
the long-time limit by setting the time derivatives equal
to zero, for an active medium detuned by an arbitrary
amount δac from the resonant cavity mode. Under these
conditions, the output field is expected to oscillate with
a carrier frequency ωL which is neither equal to ωc nor
ωa/2, but to some intermediate value determined by the
cavity and atomic parameters. For this reason, we look for

steady-state solutions of the type

F̄ (z, t) = F̄st(z)e−iδωt, (6)

P̄ (z, t) = P̄st(z)e−i2δωt, (7)

D̄(z, t) = D̄st(z) (8)

where δω is the frequency offset of the operating laser line
from the resonant mode (i.e. δω = ωL−ωc). Of course, δω
is unknown and must be calculated. The atomic variables
can be determined at once as functions of the stationary
field profile:

P̄st(z) = −F̄ 2
st(z)

1− i∆

1 +∆2+ | F̄st(z) |4 , (9)

D̄st(z) =
1 +∆2

1 +∆2+ | F̄st(z) |4 , (10)

where the detuning parameter ∆ is defined as ∆ = (δac −
2δω)/γ1. Equations (9, 10) are similar to those for the one-
photon two-level system with the following substitutions:
F̄st → F̄ 2

st and δω → 2δω. The steady-state polarization
and the field envelope are generally out of phase from one
another by an amount that depends on the detuning δac
and the position of the operating laser line. On resonance,
however, P̄st and F̄st have the same phase. The steady-
state population difference (inversion) saturates at high
intensity levels in the sense that D̄st → 0 as | F̄st |→ ∞.
To determine the value of the output field and the form of
its longitudinal profile in steady state, it is convenient to
represent the field amplitude in terms of its modulus and
phase (both space dependent):

F̄st(z) = ρ(z)eiθ(z). (11)

Substituting equation (11) and equation (6) into equation
(2), we have

dρ
dz

=
αρ3

1 +∆2 + ρ4
, (12)

dθ
dz

=
δω

c
− α∆ρ2

1 +∆2 + ρ4
. (13)

The two coupled equations can be combined to yield the
first integral of the problem

ln
ρ(z)
ρ(0)

= − 1
∆

[
θ(z)− θ(0)− δωz

c

]
, (14)

while equation (12) can be integrated at once to give

(1 +∆2)
(

1
ρ2(z)

− 1
ρ2(0)

)
− ρ2(z) + ρ2(0) = −2αz.

(15)
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The boundary conditions, expressed in terms of the field
modules and phase provide the two constraining relations

ρ(0) = Rρ(L), (16)

θ(L)− θ(0) = −δω(Λ− L)/c+ 2πj, (17)

where j is, a priori, equal to zero or any positive or nega-
tive integer. This implies that, in principle, the boundary
conditions can be satisfied by more than one solution. This
is not surprising in view of the resonant nature of the cav-
ity. The result is important, however, because it suggests
the possibility of coexisting steady states and mode-mode
interactions. Then, the output laser intensity can be cal-
culated at once from equation (15) after selecting z = L,
and using the boundary condition (16), with the result

ρ4(L) =
2αL

1−R2
ρ2(L)− 1 +∆2

j

R2
, (18)

where ∆j = (δac−2δωj)/γ1, δωj is the operating laser fre-
quency. Equation (18) has two roots and at laser threshold
the intensity is not vanishing. There is coexistence of three
solutions (above threshold): the trivial and two other solu-
tions with intensity different from zero. One solution grows
with the pumping parameter up to an asymptotic value
for pumping going to infinity. The other solution decreases
towards the zero solution as the pumping grows to infin-
ity. This means that the threshold is not a second-order
phase transition as in the case of single-photon lasers.

The quantity c | lnR | /γ1Λ represents the decay rate
of the cavity field, 2πc/Λ is the spacing between adja-
cent cavity resonances. After introducing the abbrevia-
tions K = c | lnR | /Λ, α1 = 2πc/Λ and from equation
(14), we obtain

δωj = ωL − ωc =
Kδac + α1γ1j

γ1 + 2K
, (19)

where the sub-index j reminds us of the possible existence
of multiple solutions. This is the well-known mode-pulling
formula. It shows that the laser operating frequency is a
weighted average of the atomic resonant frequency and the
frequency of one of the cavity modes. The main difference
between this result for two-photon laser and that for the
one-photon laser [11] is a factor 2 in the denominator of
equation (19) which makes the dependence of δωj on the
parameters somewhat different.

4 Results of calculations

In order to keep the calculations presented in this paper
as realistic as possible, we have chosen to apply our model
for a real atomic system (for the transition 4p3/2-6p3/2 in
potassium). The reason for choosing this transition is the
result of a compromise. On the one hand, one wants the
energy of the photons involved to be as large as possible,
and preferably in the optical regime. On the other hand,
it is hard to find a two-photon transition in the optical

Fig. 1. The longitudinal variation of the steady-state modulus
of the field ρst(z) as a function of z/L for αL = 1, R = 0.9,
δac/γ1 = 0 (solid line), δac/γ1 = 0.5 (dotted line), and δac/γ1 =
1 (dashed line), (a) for the two-photon case and (b) for the one-
photon case.

regime with a large coupling, since a large two-photon
coupling demands the existence of an almost resonant in-
termediate level with opposite parity. The transition men-
tioned above involves photons with an energy of � 7980
cm−1, i.e. near-infrared, and has a two-photon coupling
that is orders of magnitude larger than the other candi-
dates we looked at, due to the almost resonant 5s state.
Besides the atom, we should also choose a cavity. In the
model presented in this paper, we are assuming that only
one mode of the cavity field is excited. For this to be true,
the cavity should be rather small, since it then supports
fewer modes, and these will be better separated in energy.
Another advantage of having a small cavity is that the
two-photon coupling µ(2) will be larger, since it is pro-
portional to V −1 (following the notation of Loudon) [16],
V being the cavity volume. We have chosen the cavity
volume V = 10−15 m3.

It is interesting to inquire into the longitudinal pro-
file of the field under given steady-state conditions. This
can be done using equation (15) with the boundary con-
dition (16). The solution of this transcendental equation
can be obtained easily by numerical means. Selected sam-
ple solutions are shown in Figure 1, where the longitudinal
variation of the steady-state modulus of the field ρst(z) is
plotted against z/L for an amplitude reflectivity of the
mirrors R = 0.9, αL = 1, j = 0, and for different values
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Fig. 2. The spatial derivative of the steady-state modulus of
the field dρ(z)/dz as a function of z/L for αL = 1, R = 0.9 and
δac/γ1 = 0 (solid line), δac/γ1 = 0.5 (dotted line) and δac/γ1 =
1 (dashed line), (a) for the two-photon case and (b) for the
one-photon case.

of the detuning parameters δac/γ1. In this case the field
longitudinal profile undergoes a fairly large variation. The
details of the spatial variation of the laser intensity inside
the medium are governed by the degree of saturation and
by the mirror reflectivity. The longitudinal variation of
the steady-state modulus of the field for small z is smaller
than it would be in the single-photon case, but the in-
crease for large z appears to be faster, reflecting the ad-
ditional non-linearity of the system. This is seen by con-
sidering the spatial derivative of ρ(z) shown in Figure 2a.
It is increasing with z, while the corresponding quantity
for the single-photon case Figure 2b actually decreases for
the same interval and the same parameters. Note that the
results of Figures 1 and 2 are insenstive to the sign of
δac since we have chosen j = 0 and in this case only δ2ac
appears in equations (15) and (16).

In Figure 3 the steady-state inversion is plotted against
the field amplitude, for R = 0.9, αL = 1, j = 0, and
for different values of the detuning parameters δac/γ1. We
show that saturation will occur at high intensity levels
with increasing the detuning parameter δac/γ1. Also, with
decreasing the amplitude reflectivity R, the steady-state
population difference saturates at high intensity levels as
seen in Figure 4. Also, from Figure 4 we see that the cav-
ity quality (i.e. the reflectivity R becoming smaller) has a
dramatic influence on saturation. Two-photon lasers and

Fig. 3. The steady-state population inversion is plotted
against the stationary field | Fst | for αL = 1, R = 0.9 and
δac/γ1 = 0 (dotted line), δac/γ1 = 5 (dashed line), δac/γ1 = 10
(long-dashed line), and δac/γ1 = 50 (solid line).

Fig. 4. The steady-state population inversion is plotted
against the stationary field | Fst | for αL = 1, R = 0.5 and
δac/γ1 = 0 (dotted line), δac/γ1 = 5 (dashed line), δac/γ1 = 10
(long-dashed line), and δac/γ1 = 50 (solid line).

usual one-photon lasers are a priori very different systems
since the former are based in an intrinsic nonlinear pro-
cess, the two-photon stimulated emission, which depends
on the field intensity. It is thus not surprising that the
longitudinal variation of the steady-state modulus of the
field ρst(z) of the two-photon lasers be very different from
those of one-photon lasers. The most salient distinctive
feature of the two-photon lasers is: the laser-off solution is
always stable (thus implying the necessity of triggering for
laser action). Moreover, self-pulsing emission is still pos-
sible in autonomous class-B two-photon lasers [13] (lasers
for which the polarization decay rate largely exceeds the



M. Abdel-Aty and M.R. Abdel-Salam: Semiclassical steady-state analysis of a degenerate two-photon laser 247

population and photon decay rates and on which no ex-
ternal modulation is exerted), a behavior that is in con-
trast with most laser models. Although the stability and
dynamical properties of the two-photon lasers have been
the subject of several studies [13–15,17–20], there are still
many questions about the behavior of two-photon lasers
that need to be addressed including the laser linewidth,
coherence properties, instabilities in the output power,
photon fluctuation noise, photon correlations and detailed
studies of the threshold behavior. These studies should
lead to deeper understanding of the highly non-linear in-
teraction between light and matter and better understand-
ing of lasers in general. However, we have presented calcu-
lations using parameters for a real atomic system, but we
do not claim to have that it is possible to construct a laser
operating on the 4p3/2-6p3/2 transition in potassium, since
the value chosen for the cavity volume is quite optimistic
with respect to present-day technology. An analysis of the
linear stability together with many other aspects of the
linear stability in two-photon processes such as transient
behavior, instabilities etc., will be discussed in another
publication.

In conclusion, we have generalized the analysis of the
single-mode homogeneously broadened single-photon laser
in steady-state to the two-photon case. We have calculated
the spatial behavior of the field strength and phase and
have shown the effect of the additional non-linearity due
to the two-photon coupling. We have also obtained the
saturation behavior as a function of the parameters of the
system. Although the model is rather idealized, its general
features should be relevant to a real single-mode system.

The authors wish to thank Professor P. Lambropoulos for sug-
gesting the problem and for continuous discussion.
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